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Social Learning in Multi Agent Multi Armed Bandits
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Motivated by emerging need of learning algorithms for large scale networked and decentralized systems,

we introduce a distributed version of the classical stochastic Multi-Arm Bandit (MAB) problem. Our setting

consists of a large number of agents n that collaboratively and simultaneously solve the same instance of K
armed MAB to minimize the average cumulative regret over all agents. The agents can communicate and

collaborate among each other only through a pairwise asynchronous gossip based protocol that exchange a

limited number of bits. In our model, agents at each point decide on (i) which arm to play, (ii) whether to, and

if so (iii) what and whom to communicate with. Agents in our model are decentralized, namely their actions

only depend on their observed history in the past.

We develop a novel algorithm in which agents, whenever they choose, communicate only arm-ids and

not samples, with another agent chosen uniformly and independently at random. The per-agent regret

scaling achieved by our algorithm is O

( ( ⌈ Kn ⌉+log(n)
∆ log(T ) +

log
3(n) log log(n)

∆2

) )
. Furthermore, any agent in our

algorithm communicates (arm-ids to an uniformly and independently chosen agent) only a total of Θ(log(T ))
times over a time interval of T .
We compare our results to two benchmarks - one where there is no communication among agents and

one corresponding to complete interaction, where an agent has access to the entire system history of arms

played and rewards obtained of all agents. We show both theoretically and empirically, that our algorithm

experiences a significant reduction both in per-agent regret when compared to the case when agents do not

collaborate and each agent is playing the standard MAB problem (where regret would scale linearly in K ), and
in communication complexity when compared to the full interaction setting which requires T communication

attempts by an agent overT arm pulls. Our result thus demonstrates that even a minimal level of collaboration

among the different agents enables a significant reduction in per-agent regret.
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→ Distributed Algorithms; • Networks → Network Dynamics.
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1 INTRODUCTION
The Multi Armed Bandit (MAB) problem is a fundamental theoretical model to study online learning

and the exploration-exploitation trade offs associated with them. In this paper, we introduce a

collaborative multi-agent version of the classical MAB problem which features a large number of

agents playing the same instance of a MAB problem. Our work is motivated by the increasing need

to design learning algorithms for several large scale networked systems. Some common examples

include (i) social and peer-to-peer recommendation services catering to large number of users who

are in turn connected by a network ([38],[55],[20], [8]), (ii) a collection of distributed sensors or

Internet of Things (IoT) devices learning about the underlying environment (such as road traffic

conditions) and connected with each other through some communication infrastructure such as

the wireless spectrum ([6, 46]), and (iii) online marketplaces with many services catering to the

same customer base, where the different services can potentially share data about the users in some

privacy compatible form ([11]) and learning in groups ([23], [34]).

A common theme in many of these applications is the presence of a single MAB instance, which

many agents are simultaneously playing to minimize their own cumulative regret. Importantly, the

agents can collaborate to speed up learning by interacting with each other only in some restricted
form. As an example, the number of bits communicated or the frequency of interactions among

agents may be limited in settings where either the agents are geographically distributed and

communications are expensive or when in a IoT network where the devices performing learning

are energy constrained. Our objective in this paper is to understand the benefit of collaboration in

speeding up learning under natural communication constraints.

1.1 Model overview
Our setting consists of a large number of agents n, that collaboratively solve the same instance

of a stochastic K-armed MAB problem ([13]), where each arm yields a binary valued reward. The

objective of each agent is to take actions to minimize their own cumulative regret. If there were

just one agent, or if the agents were oblivious to each other and did not collaborate, then each

agent is playing independently, the classical K armed MAB problem. In our model, the agents can

potentially collaborate with each other in solving the MAB problem by sending messages to each

other over a communication network connecting them.

Formally, agents are equipped with independent Poisson clocks (asynchronous system), and when

an agent’s clock rings, an agent takes an ‘action’. Each action of an agent consists of (i) which arm

to play to observe a reward, (ii) whether to communicate, and if so, (iii) what and with whom to

communicate. Our model imposes three constraints on the communications among the agents.

Firstly, each agent, whenever it chooses to communicate, can do so with only one other agent

and is thus, is ‘gossip style communications’. Secondly, agents can only communicate a limited

O

(
log(nK)

)
bits, each time they choose to communicate. The number of bits communicated in each

communication attempt cannot scale with time or depend on the problem instance. In particular,

this forbids agents from sharing, either all their sample history or estimates of arm-means up to

arbitrary level of precision. Thirdly, each agent can access the communication medium only o(T )
times over any horizon of T pulls of arms. This restriction disallows agents from communicating

each time they pull an arm and observe a reward. Thus, agents must aggregate their observed

history in some form, where the size of the message does not increase with time and communicate.
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The agents are decentralized - namely the actions of each agent (which arm to play, whether to

communicate and if so to whom and what to communicate), can only depend on the agents past

history of arms played, rewards obtained and messages received.

1.2 Model Motivations
We highlight two instances of our model to motivate our choice of problem formulation and our

restrictions on the communications among agents.

The first example is the setting of multiple users (aka agents) on a social network, visiting restau-

rants in a city. In this case, the restaurants can be modeled as arms in a MAB providing stochastic

feedback on its quality during each visit. Each visit by an agent to a restaurant provides a (noisy)

score, using which an individual agent can update her/his opinions of restaurants. Furthermore,

the social network platform enables users or agents to personally communicate to one another

to exchange their experiences. The feedback constraint on the number of bits translates to only

recommending a restaurant identity, as opposed to the real-valued score for that (and/or any

other) restaurants. If the agent communicates her/his top-scoring restaurant (as is the case in our

algorithm later), then agents are implicitly sharing rankings (their current top-choice) instead of

scores, which is well-known to be more interpretable (different people’s scores are hard to compare).

Our framework thus provides a guideline to understand good policies for the users to explore the

city that efficiently leverage the information exchanged on the underlying social network.

A second example is from robotics, where several robot agents can communicate over a wireless

ad-hoc network in a cooperative foraging task [52]. The robots need to forage for a high-reward

site from among several possible physically separated locations (these sites constitute the arms of

the bandit). Since the communciation network is bandwidth constrained, and the robot agents can

only communicate (typically pair-wise) with those within their radio-range, the communication

constraints we consider are appropriate in this setting. We also refer to [33] for another related

robotics example involving collaborative leak detection in a pipe system.

1.3 Main Result
We consider a setting with n agents and K arms of a MAB problem. The main result in this paper is

that we develop an algorithm that leverages collaboration across agents, such that the per-agent

regret after an agent has played forT times scales
1
as Θ

(
log(n)+ ⌈ Kn ⌉

∆ log(T ) +
log

3(n) log log(n)
∆2

)
, where

∆ is the arm-gap between the best and the second best arm. Moreover, in a time interval of T , an
agent communicates for about log(T ) times, where each communication is an arm-id, i.e., uses

at-most log
2
(K) + 1 bits per communication.

The main idea in our algorithm is to use the communication medium only to recommend arms,
rather than to exchange observed scores or rewards. Our policy restricts agents to only play from

the set of arms they are aware of at any instant of time. Each agent is only aware of a small set of

arms in the beginning, and this set increases with time as agents receive recommendations. Agents

in our algorithm communicate with another agent chosen uniformly and independently at random,

and thus the communications induced by our algorithms is ‘gossip style’ [47]. Qualitatively, our

regret scaling occurs due to two reasons: (i) The (local-explore + gossip) mechanism underlying

our algorithm ensures that the best arm spreads quickly through the network to all agents. Notice

that since agents only play from among arms they are aware of, it is not apriori clear that all agents

1
All logarithms in this paper are natural logs unless otherwise specified.
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Fig. 1. A plot consisting of 80 agents and 40 arms comparing the single agent UCB without communications
with our scheme. The arm means were randomly generated in the interval (0.4, 0.85) and the curve is averaged
over 10 runs with 95% confidence interval.

become aware of the best-arm at all. (ii) Nevertheless, our algorithm ensures that each agent in the

network only ever explores a vanishingly small fraction Θ( 1n +
log(n)
K ) of the arms. In other words, the

sub-optimal arms do not spread and thus not all agents need to learn and discard the sub-optimal

arms.

Analytically, we introduce several novel coupling arguments and tail estimates to study variants

of the classical spreading processes on graphs (cf. Theorem 25, 27), which can be of independent

interest in themselves. Furthermore, we employ arguments based on the linearity of expectation to

handle the dependencies of the regret among the agents induced by our algorithm (cf. Propositions

11,13,16), which we believe can be useful in studying other algorithms for our model.

1.4 Comparison with Benchmark Systems
Since we are interested in quantifying the effect of collaboration through limited noisy pairwise

interactions among the agents, we compare our result with the two extreme opposite scenarios

of collaboration among the agents - a setting with no communication and a one with complete

interactions among agents.

1. No Communication regime - If the players are unaware of each other and do not interact at

all, then each player will see a standard MAB problem consisting of K arms. Thus, from well known

results (for ex. [4]), each agent after playing the MAB problem forT time steps, must incur a regret

that scales as O

(K
∆ log(T )

)
.

2. Full Interaction Regime - On the other end is the perfect collaboration model in which every

agent, whenever its clock rings, plays an arm, observes a reward and then broadcasts both the

arm played and reward obtained to all other agents. In this case, every agent before playing an

arm, has access to the entire system history and thus can jointly simulate a single agent optimal

scheme. Thus, after a total of T clock ticks of tagged agent, the total number of arm pull by all

agents is roughly nT . It is not exact as there is some randomness in the number of times an agent

plays in a given time interval determined by the randomness due the clock process of agents. Thus,

the total network as a whole will incur an average regret of order O

( (K
∆ log(nT )

) )
. As there are

n agents in total, the per agent regret in this case scales as
1

n O

( (K
∆ log(nT )

) )
which is of order

O

(K
n

1

∆ log(T ) +
K log(n)

n∆

)
. This is the best possible per-agent regret scaling one can hope for in
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3
<latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit><latexit sha1_base64="JYBj3t+WTAQe8bLkJgi7MxOh5ms=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfaWMtw==</latexit>

1<latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit><latexit sha1_base64="l9eImvYcFOKpzEDji/n9jPDeWb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Aep2MtQ==</latexit>

Fig. 2. A schematic with 3 arms and agents. At the beginning, the top, middle and bottom agents are
aware of arms 1,2 and 3 respectively, denoted by the set. The dots represent epochs of the clock process at
which the agents play an arm and may additionally choose to communicate an arm. The arm-id played and
communicated are denoted on the epochs and vertical arrows respectively. The recipient of the communication,
denoted by the head of the vertical arrows are chosen uniformly at random. An agent, at each epoch only
plays and recommends from among the arms it is aware of.

this networked setting and no other collaborative policy can beat this regret scaling. However, to

achieve this, each agent must communicate, both its arms and the observed reward to all other

n − 1 agents, each time it plays an arm. In other words, an agent must communicate T times, over

T plays of the arm, and this communication is broadcast to all other agents.

In our model on the other hand, we are restricted to just pairwise random communications and

each agent can participate in o(T ) communications over T times it pulls arms to collect rewards.

Nevertheless, we show that our algorithm achieves, both a significant reduction in the per-agent

regret compared to the setting of no interactions among agents by bringing the order from K to

⌈Kn + log(n)⌉ as the leading term in front of
log(T )
∆ . Our algorithm is also only a factor log(n) off from

the setting of complete interaction among agents, which has a factor of
K
n in front of the

log(T )
∆ term.

Moreover, our algorithm achieves the reduced regret scaling with a much smaller communication

resources where an agent only uses the communication channel of order log(T ) times over T times

of play of an agent. We plot in Figure 1, a representative situation showing the regret growth of

our algorithm against that of the no communication and full interaction case.

Organization of the Paper - In Section 2, we give a precise mathematical formulation of the

problem. We then specify the algorithm in Section 3 and the main theorem statement is given

in Section 4. We then give an overview of the proof in Section 5. We evaluate our algorithm and

benchmark its performance empirically both in synthetic and real data in Section 6. We then survey

related work in Section 7, and then conclude with some discussions and open problems. The full

proof of our main result is carried out in Appendices A, B and C.

2 PROBLEM SETTING
We have a collection of n agents, each of whom is playing the same instance of a MAB problem

consisting of K arms. The K arms have unknown average rewards (µi )i ∈{1, · · · ,K } , where each

µi ∈ (0, 1). Without loss of generality, we assume that 1 ≥ µ1 > µ2... ≥ µK ≥ 0. However, the

agents are not aware of this ordering of arm-means. Denote by the arm-gap ∆ := µ1 − µ2 and we

shall assume that ∆ > 0. If at any time, any agent plays an arm i ∈ [n], it will receive a reward
distributed as a Bernoulli random variable of mean µi , independent of everything else.
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2.1 System Model
Clock Process - The system evolves in continuous time, where each agent i ∈ [n] is equipped
with an unit rate Poisson process on R+ denoted by Ci (·), which functions as a clock for agent i .
Each agent i ∈ [n] takes an action only at those random time instants when the clock Ci (·) ‘ticks’,

i.e., only at those random times t ≥ 0 such thatCi (t) −Ci (t
−) = 1. The times t when a clock ticks is

referred to as an epoch of the clock process. The processes (Ci (·))i ∈[1,n] are all i.i.d., and hence the

actions of different agents are not synchronized.

Agent’s Actions - An action by an agent (which it makes at the epochs of its clock process) consists

of three quantities - (i) an arm among the set of K arms to play and obtain a reward (where the

observed reward is either a 0 or a 1), (ii) the choice of whether to initiate a pairwise communication,

(iii) and if so what message and to whom to communicate to. The message communicated by any

agent, each time it does, the message length must not exceed O

(
log(nK)

)
bits (in our algorithm,

message lengths are smaller than log
2
K + 1 bits). Furthermore, the message length must not either

scale with time or depend on the problem parameters such as arm means or gap ∆. Moreover, over

T total epochs of an agent where it played arms and collected rewards, it must have communicated

only o(T ) times. From henceforth, we use the term number of epochs to denote the number of times

an agent has played arms and collected rewards and time to refer to the continuous time during

which the agents’ clocks ring. Our system is decentralized, namely agents’ actions of which arm to

pull and whether to communicate and if so what and whom to communicate to must only depend

on the agent’s past history or arms pulled, rewards obtained and messages received.

Technical Setup - We suppose there exists a probability space (Ω,F ,P), which contains n i.i.d, unit

rate marked Poisson Point Processes (PPP), corresponding to the clocks for the agents. Each epoch

of each clock, has associated with it, three independent uniform [0, 1] valued random variables.

The system’s sample path is then a measurable (i.e., deterministic) function of the set of marked

PPPs. The interpretation of this setup is as follows. Every agent i ∈ {n}, plays an arm at the epochs

of its clock process and the marks decide actions (whether to communicate and which arm to play)

and their outcomes (observed rewards and recipients of communication if any). The action of every

agent at every epoch of its clock must be measurable function of only its arms played, observed

rewards and received messages in the past. In the absence of messaging, every agent is playing a

standard MAB problem, where its action, which is just which arm to play, is a measurable function

of the past arms chosen and rewards obtained. The key new ingredient in our setup is the active
messaging, where agents can choose, based on the history of chosen arms, observed rewards and
received messages, the arm to play and the message to communicate, if at all. Thus, our setting

is distributed since an agent is not aware of the arms played and the rewards obtained by other

agents, but only has an indirect knowledge through the active messages received.

2.2 Performance Metric
The main performance metric of interest is the cumulative regret incurred by all agents. For any

agent i ∈ {1, · · · ,n}, andm ∈ {1, · · · , }, denote by I(m)i ∈ {1, · · · ,n} to be the arm played by agent

i , in itsmth epoch. For any agent i , after it has played for T epochs, define by

R(T )i =

T∑
t=1

(µ1 − µI (t )i
)
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In this multi-agent scenario, we want to design algorithms, in which every agent i ∈ {1, · · · ,n}, is

interested in minimizing its own cumulative regret E[R(T )i ], where the expectation is with respect

to both the observed randomness and the policy, while requiring as minimal a communication

resources as possible.

2.3 Model Assumptions
Each agent can agree upon a common protocol to follow prior to execution. This could potentially

depend on the agent’s indices. We assume all agents are aware of a common non-trivial lower

bound ε on this arm-gap 0 < ε ≤ ∆, and use this information to make decisions. Nevertheless, our

proposed algorithm still executes if ε > ∆, and we verify that the degradation in performance of

our algorithm is minimal in this case through simulations in Section 6.

Such an assumption of known ∆, but unknown mean rewards (which is the setting in our case), is

used in several MAB settings (see the book of [37]) - for instance the classical ϵ-greedy algorithm

[53] or the UCB-A algorithm [3]. In the networked setting similar to ours, this assumption seems

to be standard ([54],[27]). Certain algorithms in [27] require an input parameterT , that depends on
the arm-gap ∆. However, it is known from [35],[13], that even if the forecaster knows the arm-gap

∆, the regret scales at-least as order Θ
(
log(T )
∆

)
[35]. Thus, the knowledge of arm-gap, does not

affect the complexity of the problem, at-least from the perspective of regret scaling in time.

3 ALGORITHM
The algorithm has four parameters, L,M,T0 ∈ N and α , the UCB parameter. The algorithm

evolves with the different agents being in different states or phases taking values in {−M,−M +
1, · · · , 0, 1, · · · }. At the beginning of execution, all agents start out in state −M , and as the execution

proceeds, they increment their phase by 1. In other words, the state of every agent is non-decreasing

with time. We say that an agent is in Early Phase, if its state is −1 or smaller, and in Late Phase if its
state is 0 or larger.

3.1 Notation
For each agent i ∈ {1, · · · ,n} and phase j ∈ {−M, · · · }, we denote by A(j)i ⊆ {1, · · · ,K} to be the
set of arms agent i is aware of at the beginning of phase j . The algorithm is such that in any phase,

an agent will only play from among the set of arms it is aware of. In our algorithm, every agent, if

it chooses to communicate, will only communicate arm ids. Thus, during the course of execution

of our algorithm, agents will receive arm ids as messages.

For an agent i ∈ [n] and phases j,k ∈ {−M, · · · }, denote by B(j)i ⊂ {1, · · · ,K}, the set of arms

received by agent i , while agent i is in phase j. At the start of phase j ≥ −M + 1, agent i updates

the set of arms it is aware of as A(j)i = A(j−1)i ∪ B(j−1)i . In other words, agents update the set of arms

they are aware of only at the end of a phase. Agents agree upon an initial set of arms, i.e., A(−M )i
is chosen before execution of the algorithm. Notice that the set of arms an agent is aware of is

non-decreasing, i.e., if for any j ∈ {−M, · · · , }, any agent i ∈ {1, · · · ,n} and arm l ∈ {1, · · · ,k},

l ∈ A(j)i =⇒ ∀h ≥ j, l ∈ A(h)i .

For any agent i ∈ {1, · · · ,n}, any arm l ∈ A(j)i , and any k ∈ N, denote by N (j)l ;i (k) the number of

times arm l was played by agent i during its first k plays (epochs) in phase j. If N (j)l ;i (k) > 0, denote
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by µ̂(j)l ;i (k) the empirical estimate of the mean of arm l by agent i , using only the samples collected in
the first k plays of agent i in state j.

3.2 Algorithm Description
For any agent i ∈ {1, · · · ,n}, its execution is defined as follows.

Initialization - At time t = 0 (i.e., at the beginning of phase −M), agent i ∈ {1, · · · ,n} is aware

of arms A(−M )i =
{(
i ⌈Kn ⌉ mod K

)
+ 1, · · · ,

(
(i + 1)⌈Kn ⌉ − 1 mod K

)}
. Observe that the cardinality

|A(−M )i | = ⌈Kn ⌉. In this initialization step, we assume agents are aware of their arm-ids for ease of

exposition. In the sequel in Remark 6, we give a randomized initialization where each agent in the

beginning, is aware of a random set of arms chosen independently without knowledge of agent-ids.

Early-Phase - When agent i is in any phase j ∈ {−M, · · · ,−1}, it plays from among the arms in

A(j)i in round-robin fashion. Agent i is in any early phase j for precisely L times, i.e., for exactly L
epochs of its clock process Ci (·), before shifting to state j + 1. At the end of (L plays in) phase j,
agent i chooses another agent uniformly and independently at random, and communicates to it the

index (id) of the arm from A(j)i having the highest empirical mean based on the samples collected

during phase j.

Late-Phase - Agent i is in this late-phase, if its phase j ∈ {0, 1, · · · }. Agent i is in phase j ∈ {0, 1, · · · }
for exactly Tj epochs, where Tj := ⌊

T0
2
2
2
j
⌋ − ⌊

T0
2
2
2
j−1
⌋, before shifting to phase j + 1. At any play

instant k ∈ [Tj ] of agent i in phase j, if there is an arm l ∈ A(j)i such that N (j)l ;i (k) = 0, it plays one

such arm, chosen arbitrarily. If no such arm exists, agent i then plays an arm chosen according to

the UCB policy [4], i.e., the arm is chosen from the set

arg max

l ∈A(j )i

©­«µ̂(j)l ;i (k − 1) +
√√

α log(k)

N (j)l ;i (k − 1)

ª®¬ .

Furthermore, for all late phases j ≥ 1, agent i communicates only for the first n2j epochs and after

that does not communicate. Agent i will communicate in phase j , the arm from the previous phase

O (j)i ∈ A
(j−1)
i that was played the most number of times, with each communication attempt directed

at an uniform random agent.

3.3 Algorithm PseudoCode
For ease of readability, we translate the above description of our algorithm into pseudo-code in

Algorithm 1. This algorithm assumes access to a function called Communicate, that takes in an

arm-id ξ ∈ {1, · · · ,K} and an agent y ∈ {1, · · · ,n} as input and sends arm-id ξ to an agent chosen

uniformly at random from {1, · · · ,n} \ {y} and independently of everything else.
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Algorithm 1 Distributed MAB Regret Minimization (at Agent i)

1: Input:M,L,T0,α
2: Initialization:
3: A(−M )i =

{(
i ⌈Kn ⌉ mod K

)
+ 1, · · · ,

(
(i + 1)⌈Kn ⌉ − 1 mod K

)}
4: for Epochs t ∈ N of clock process Ci (·) do
5: if t ≤ ML then ▷ Early Phase

6: j ← t mod L ▷ Current Phase number

7: if t mod L == 0 then ▷ End of a Phase

8: Communicate(argmaxl ∈A(i )j
µ̂(i, j)l ,i)

9: A(j+1)i ← A(j)i ∪ B
(j)
i

10: else
11: Play arm from A(j)i in round-robin

12: end if
13: else ▷ Late Phase

14: j ← inf

{
m ≥ 0 : t ≤ ML + ⌊T0

2
2
2
m
⌋

}
15: if t == ML + ⌊T0

2
2
2
j
⌋ then ▷ New Phase

16: A(j+1)i ← A(j)i ∪ B
(j)
i

17: end if
18: if ∃l ∈ A(j)i such that N (j)l ;i = 0 then
19: Pull arm l
20: else

21: Pull - argmaxl ∈A(j )i

(
µ̂(j)l ;i (t − 1) +

√
α log(k )
N (j )l ;i (t−1)

)
22: end if
23: if t −ML − ⌊T0

2
2
2
j
⌋ ≤ n2j AND j ≥ 1 then

24: Communicate(argmaxl ∈A(j−1)i
N j−1
l ;i (Tj−1) ,i) ▷ The arm most played in the previous

phase (j − 1)
25: end if
26: end if
27: end for

3.4 Remarks on the Algorithm
The algorithm is ‘fully asynchronous’ in the sense that agents act independently without keeping

track of either a absolute continuous time, or a shared global system clock. Notice that in the

early-stage, every agent communicates exactlyM times, which we will later set to be Θ(log(n)) in
the sequel. In each late-stage j ≥ 1, an agent communicates for exactly n2j times. Since the duration

of each late-stage phase is doubly exponential, after T time steps of play of any agent, it would

have communicated order log(T ) number of times, where each communication is of log
2
(K) bits.

One can potentially improve the algorithm, by using a black-box best arm identification in the early-

phase of an agent instead of playing arms in a round robin fashion. Concretely, if A is any best-arm

identification algorithm, then in each early phase j ∈ {−M, · · · ,−1}, each agent i ∈ {1, · · · ,n},

will use the algorithm A on the set of arms A(i)j for at-most L total arm pulls. If at the end of L arm

pulls, either a best arm from A(i)j is identified which is communicated, or the algorithm A fails to
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terminate within L steps, in which case a random arm from A(i)j will be communicated and agent i
moves to phase j + 1. Similarly, one could use a more sophisticated version of the UCB algorithm

([37]) in the late phase and obtain slightly better results.

4 MAIN RESULT
Theorem 1. Consider a system with n ≥ 1 agents and K ≥ 2 arms, with each agent running
the above algorithm with parameters M = ⌈361 log(n)⌉ + 1, T0 = ⌈

max(K 2,n) log(ε−1)
ε2 ⌉ and L =⌈

2M+ ⌈ Kn ⌉
ε2 (18M) log(100(2M + ⌈Kn ⌉))

⌉
, where 0 < ε ≤ ∆ and UCB parameter α = 3. Then for

every agent I ∈ {1, ...,n} and ∀T ∈ N, the regret after agent I has played for T epochs is bounded by

E[R(T )I ] ≤
4α

∆
4(M̂) log(T −T0)1T >T0 +ML + 8T0

(
150 log(n)

n3
1n≥29 + 1n<29

)
+

2 log
2

(
log

2

(
2T

T0

)) (
4α

∆
log

(
T0
2

)
+ M̂

(
1 +

π 2

3

))
1T ≥T0 , (1)

where M̂ = 2M + ⌈ 3Kn2
⌉ + ⌈Kn ⌉. Moreover, inT epochs of play, each agent communicates at-most a total

ofM + n log(T /T0)1T ≥T0 times.

To help parse the result, we consider the case of K = n in the following remarks to understand how

effectively our algorithm is leveraging the collaboration among agents.

Remark 2. In the case K = n and n > 29, Theorem 1 states that the expected regret of any agent
I after T epochs is O

(
log(n)
∆ log(T ) +

log
3(n)
∆2

log log(n)
)
. We can compare this regret scaling with the

two benchmark systems of no communication and complete interaction described in Section 1.4. In
case agents do not interact at all, the per-agent regret is known ([35]) to scale as O

(
(n∆ log(T )

)
. In the

setting of complete information exchange however, from the discussion in Section 1.4 adapted to the
case K = n yields that the per agent regret scales as O

(
1

∆ log(T ) +
log(n)
n∆

)
. Thus, our algorithm is off by

only by a logarithmic factor in n with respect to full coordination plus an additive constant regret term
of O

(
log

3(n) log log(n)
∆2

)
.

Remark 3. Recall that in the fully centralized setting, the total number of times an agent communicates
with the centralized server is T , if an agent plays for T epochs. This follows as for each play of the
agent, the centralized entity must communicate an arm-id for the agent to play which will require
at-least log

2
(K) bits and the agent reports back its observed samples which takes 1 bit. However, in

our algorithm, the total number of communications initiated by an agent in T epochs is order log(T ),
where each communication is at-most log

2
(K)+ 1 bits, similar to the setting with complete information

exchange.

Further, if the arm rewards are drawn from a more general sub-Gaussian distribution, the analysis

in this paper will go through with minor modifications, and both the regret scaling and communica-

tion scaling remains unchanged. However, this relaxation has implications on the communication

complexity with a centralized algorithm. Specifically, each agent needs to encode and communicate

the arm reward at a sufficient resolution to distinguish between the best and next best arm mean,

which will take an additional Θ(1/∆) bits (assuming ∆ is known) per message.

Thus, our algorithm is able to effectively emulate the complete interaction setting using only pair-

wise anonymous asynchronous gossip-style communications with much smaller communication

complexity.
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Remark 4. We note that the constants in front ofM and L is sub-optimal as it arose from certain tail
probability bounds which are not tight. In all simulations in this paper, we setM = ⌈3 log(n)⌉ + 1 and

L = ⌈0.8
2M+ ⌈ Kn ⌉

ε2 log(10(2M + ⌈Kn ⌉)ε)⌉. We see from our plots in Figures 1, 4 and 5, that this choice
works well in practice.

Remark 5. The choice of the parameter ε , appears from Theorem 1 to crucially affect the performance
of our algorithm. However, we see numerically in Section 6, that our algorithm enjoys good performance
for a range of values of ε , even if ε > ∆.

Remark 6. The initialization in Line 3 of Algorithm 1 requires agents to be aware of their index, which
may not be feasible in many scenarios. The following simple modification to Line 3 can make our
algorithm fully distributed. Given any positive γ ∈ (0, 1), each agent i ∈ {1, · · · ,n}, will construct its

initial set A(−M )i , by choosingMγ :=

⌈
ln

(
1

γ

)
n ln( K

K−1 )

⌉
arms from the set {1. · · · ,K}, uniformly at random

with replacement. Then, with probability at-least 1 − γ , there will exist an agent j ∈ {1, · · · ,n} such
that 1 ∈ A(−M )j , i.e., the best arm is in some agent’s initial playing set. On this event, the regret of any
agent I ∈ {1, · · · ,n} after playing for T time steps will satisfy

E[R(T )I ] ≤
4α

∆
4(M̂ +Mγ ) log(T −T0)1T >T0 +ML + 8T0

(
150 log(n)

n3
1n≥29 + 1n<29

)
+

2 log
2

(
log

2

(
2T

T0

)) (
4α

∆
log

(
T0
2

)
+ (M̂ +Mγ )

(
1 +

π 2

3

))
1T ≥T0 . (2)

All occurrences of M̂ in Equation (1) is replaced by M̂ +Mγ .

4.1 Discussion
The per-user regret bound in Equation (1) implies several objectives accomplished by the algorithm.

First, it establishes that every agent will play the best arm eventually with probability 1. For if an

agent did not play the best arm ever with some probability δ > 0, then the per-user regret has

a lower bound of
δ
nT , which for fixed n, the scaling in time is not logarithmic. Second, since an

agent only chooses arms from the set of arms it is aware of, the regret bound also implies that on

average, a typical agent plays at-most order log(n) number of arms. These two properties of (i)
every agent being aware of the best arm, while (ii) playing a total of order log(n) number of distinct

arms illustrates the key benefit of collaborative messaging. In words, collaboration spreads the best
arm to all other agents while not spreading the poor arms, so that not all agents need to learn and
discard the poorly performing arms.

Furthermore, observe that our regret bound has an additive term that scales as
log

3(n)
∆2

. This additive

term can be viewed as a cost of collaboration through the gossip noisy process. As nodes only play

from the set of arms they are aware, a node may not play the best arm until it is recommended

and will keep incurring a regret linear with time. However, from well known results ([28]), it takes

an agent at-least order ∆−2 epochs to identify the best arm with a constant probability and thus

to communicate it through the gossip process. Thus, the term
log

3(n)
∆2

is the average time before a

typical agent is aware of the best arm and starts playing it. We refer the reader to Appendix D for

more discussion.
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4.2 Algorithm Intuition and Challenges in Analysis
Our goal is to design an algorithm so that all agents become aware of the best arm as quickly as pos-

sible, since agents will incur a linearly scaling regret until they become aware of the best arm. Thus,

we conceptually, divide the evolution of the algorithm into two stages: an early stage and a late stage.

The early stage: In this stage, gossip and best arm identification dominates, where the goal is to

ensure all agents have identified the best arm, but simultaneously making sure that each agent is

only aware of and has explored a small fraction of the arms. The tension is the following:When
not all agents are even aware of the best arm, agents must aggressively spread or communicate what
they estimate as their current best arm. However, if agents communicate too frequently, then their
estimates are likely to be poor, as they will be based on too few samples, thus leading to both increased
communications and bad recommendations (resulting in all agents being aware of too many arms and
leading to poor regret scaling).

The late stage: As time progresses when all agents are reasonably sure of being aware of the best

arm, agents must start focusing on regret minimization rather than estimating best arms. However,

since we want to ensure that all agents are aware of the best arm eventually with probability

1, agents must nevertheless keep communicating. In particular, almost-surely, all agents must
eventually make infinite recommendations as time progresses, while only making small and finitely
many incorrect recommendations. Thus, the late-stage must be designed to balance two competing

objectives. (i) In the rare case that not all agents are aware of the best arm when they shift to the

late-stage, they must become aware of the best arm quickly and, (ii) in the typical case when all

agents are aware of the best arm at the beginning of the late-phase, the number of new arms an

agent becomes aware of in the late-stage must be small. The second objective is desirable as all

newly aware arms in the late-phase, conditioned on agents being aware of the best arm at the end

of the early-phase will necessarily be sub-optimal arms.

Recommendations - In our algorithm, we decouple the samples (reward of arm pulls) on which

agents make successive recommendations, both in the early as well as late phases. This allows us to

claim that the quality of recommendations by an agent are independent across phases, which aids

greatly in the analysis. This decoupling also ensures that the quality of recommendations made by
agents be independent of the regret an agent obtains on its samples. We achieve this independence by

using the doubling trick [9] in the late-phase and using the performance of an agent in the phase

before to make recommendations in the current phase. Contrary to the main uses of the doubling

method in converting a fixed horizon algorithm into a anytime algorithm, we use this to provide

the necessary sample splitting, between making recommendations and minimizing regret. This

decoupling comes at a price however which shows up as an additive Θ(log(log(T ))) term in the

regret.

The parameter ε in our algorithm: Observe that the algorithm needs 0 < ε ≤ ∆ for the regret

guarantees to hold. Furthermore, the closer this parameter is to ∆, the better is our regret bound,
evidenced both by our Theorem 1 and simulations in Section 6. However, we show empirically in

Section 6, that even if ε > ∆, in practice our algorithm yields good performance and leverages the

benefit of collaboration.

The knowledge of ∆ is particularly helpful to agents in deciding when to make recommendations,

i.e., the choice of both L and T0. If an agent recommends too early in the early stage, say much
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smaller than playing ∆−2 times in total, then such a recommendation will likely be wrong. One

potential method to remove requiring knowledge of ∆ would be for agents to run a fixed-confidence

best arm identification algorithm (e.g. see [29] and references therein) before making recommen-

dations. However, such a modification to our algorithm is not guaranteed to work. To see this,

consider a problem instance where µ2 − µ3 << µ1 − µ2 := ∆, with all agents being aware of arms

2 and 3 in the beginning. In the early phase of the algorithm when not all agents are aware of

the best arm, those that are not aware of the best arm (but have arms 2 and 3) will spend a large

number of samples in order to distinguish between these two arms. Thereby, these agents will stay

in the early phase for a long time, thus incurring a large regret. However, as neither of these are

the best arm, it does not matter which of these two arms is recommended, and hence agents could

have used fewer samples and have saved on incurring regret.

We remark here that this assumption seems to be made for many algorithms developed to leverage

collaboration in a networked setting. As mentioned, the simple regret counterpart to our cumulative

regret in a networked setting considered in [27] and [54] assume knowledge of∆ for their algorithms.

For instance, algorithms of [27] require T , an input parameter to be larger than a certain function

of ∆, while [54] requires an explicit lower bound on ∆ similar to ours.

5 PROOF SKETCH
We identify certain nice behaviour which occurs with high probability (w.h.p). Set δ = 1

3M . We call

the system Good, if the following events occur.

• Event E1 - All agents are aware of the best arm by time (M − 1)L(1 + δ ).
• Event E2 - The total number of times any agent is ever contacted by another agent j when j is
in the early phase, i.e., j is in state −1 or lower is at-most 2M − 2.
• Event E3 - By time (M − 1)L(1 + δ ), all agents are in phase −1 or lower.

Notice that every agent will play the best arm in phases 0 and beyond, if the Good event holds,

as all agents are aware of the best arm by at-most phase −1. We will show in Lemma 7, that the

system is Good w.h.p.

5.1 Late-Stage Analysis
We split the regret as the sum of three terms - (i) Regret in the early phase, which will be linear as

agents are only doing best-arm identification, (ii) - Regret in the late-phase due to playing the UCB

algorithm with the doubling trick and (iii) Linear regret in the late-phase until an agent becomes

aware of the best arm, if it is not aware of the best arm at the beginning of the late phase. The first

term is trivial as we will assume that all agents incur a worst case regret of 1 in each of its early

phase epoch. The main challenge in computing the second term is that the number of arms an agent

is aware of in any late-stage is a random variable and not fixed. However, the regret of an agent

conditional on the number of arms is easy to compute, as it follows directly from [4]. The key idea

here is to notice that conditioning on the number of arms an agent is aware of at the beginning of a

phase, has no effect on the regret incurred by an agent during the phase in consideration. This is so

as we do not re-use samples across phases to keep track of estimates on arm means. As the regret

conditional on the number of arms, scales linearly in the number of arms, it suffices to separately

evaluate just the mean number of arms an agent is aware of at the beginning of a phase. This is

done in Propositions 16 and 17. To evaluate the third term, we upper bound the time it takes for an

agent to learn the best arm by the time it takes by agent 1 to recommend the best arm. We show

this in Propositions 12, 13, 14 and 15, that the average number of epochs an agent has to wait in

the late-stage before being recommended the best arm by agent 1 is ‘small’.
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5.2 Early-Stage Analysis
We establish in Lemma 7 proven in Section B, that the system is Good with probability at-least

1 − 150n−3. The probabilities of events E2 and E3 are straightforward to deduce from Chernoff

tail bounds which we do in Lemmas 18 and 19 respectively. Concluding about the probability of

event E1 is the key technical innovation where the difficulty stems from the following reason. We

need to first condition on event E2, as that will imply that all agents in the early stage make a

recommendation from among at-most 2M other arms. By the choice of L, and known results from

[14] reproduced as Lemma 20, conditional on event E2, agents that possess the best arm recommend

it with probability at-least 99/100. However, conditioning on event E2 induces correlations on the

agent ids that receive the messages and hence makes the spreading process difficult to analyze

directly, as the recipients are no longer independent conditional on E2.

We proceed by considering and analyzing a fictitious virtual system which is identical to our

algorithm in the early stage with a crucial modification that agents in this fictitious system will

drop arms if it at any point it is aware of 2M + 1 or more arms. However, agents in this virtual

system will not drop the best arm once it becomes aware of it. Note that this is only a mathematical

stochastic process under consideration and hence we can assume that the agents in this virtual

system know the best arm’s index. We show in Lemma 21, that w.h.p., this virtual system has

identical sample paths as our algorithm upto time (M − 1)L(1 + δ ).

We study the virtual system by a reduction to a discrete time rumor mongering process. Specifically,

we will establish in Lemma 24, that agents in this virtual system are ‘in sync’, i.e., for all j ∈ [M],
no agent makes its (j + 1)th recommendation, before all other agents finish making their jth
recommendation (See also Figure 3). We notice that the discrete rumor mongering process we obtain

is a variation of the classical rumor spreading on [24] and [42], with two important distinctions.

First, in our discrete time model, an agent only spreads the rumor after a one time slot delay after

receiving the rumor. Second, each spreading attempt of an agent in each time slot, is successful

with probability 99/100, as opposed to always being successful in [24]. We show in Theorem 25,

that the total spreading time for this process is order log(n) with high probability. We provide a

simple proof of the spreading time in Theorems 25 and 27, which could be of independent interest.

This enables us to conclude that event E1 holds w.h.p. for the virtual system, which in turn implies

it holds w.h.p. for our algorithm, as the virtual system and our algorithm have identical sample

paths upto time (M − 1)L(1 + δ ) w.h.p..

6 NUMERICAL RESULTS
We empirically evaluate the performance of our algorithm and in particular highlight the gains due

to collaboration in reducing per-agent regret. Throughout this section, we useM = ⌈2.5 log(n)⌉ + 1

and ⌈L = 0.8
2M+ ⌈ Kn ⌉

ε2 log(20(2M + ⌈Kn ⌉))⌉. This is different from that mentioned in our Theorem 1

as the constants there arise from certain tail probability bounds that are not tight.

6.1 Synthetic Data
We evaluate the performance of our algorithm in Figure 4. For each case of ∆,n and K , we sample

the arm means uniformly in the range (0.4, 0.85 − ∆) and the best arm has mean 0.85. To be

comprehensive, we test our algorithm with instance settings ∆ ∈ {0.1, 0.2} and the number of

arms and agent pairs of (n,k) = {(20, 50), (30, 60), (40, 60)}. We vary the input parameter ε of our
algorithm and compare the performance of our algorithm against the two benchmarks stated in

Section 1.4, namely a system with no interaction and a system with perfect interaction. The no
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Fig. 3. A schematic depicting the almost-discrete behaviour of the algorithm, where agents make a recom-
mendation every 3rd epoch. We will establish in Lemma 24, that w.h.p., all agents make their ith early stage
recommendation in the interval [il(1 − δ ), iL(1 + δ )], for all i ∈ [1,M].

interaction system corresponds to a single agent playing the MAB following the UCB(2) algorithm

of [4]. The perfect interaction benchmark is one wherein when an agent’s clock ticks, it has access

to the entire system history and chooses an arm according to the UCB(2) algorithm using the entire

history. In each plot, we first sample the arm means and then do 10 random runs and plot the

average over these runs along with 95% confidence intervals.

Results - We see from Figure 4 that our proposed algorithm, is both practically scalable to large

systems and effective in leveraging the collaborations to significantly reduce the per-agent regret

compared to the case of no collaborations. Even with small ε , our algorithm has much smaller regret

growth eventually compared to the setting of no collaboration. Moreover, there is still substantial

performance gain in regret when the input parameter ε of our algorithm is varied. Note that the

theoretical guarantees in Theorem 1 only holds if ε < ∆ while in practice (as seen in Figure 4) our

algorithm performs well even if ε > ∆.

6.2 Simulations with Real Data
We consider the Movielens 1M data [25] to run our algorithm. This dataset has 4k users and 6k
movies. We selected a user category, corresponding to same gender, age and occupation. We ensured

that there are at-least 150 users in each category. We then considered a subset of movies such that

each user rated at-least 30 of those movies and each movie is rated by at-least 30 of these users.

We extract out this submatrix and run standard matrix completion [26] to fill the missing details.

We then averaged each column and divided this average by 5. This then forms the mean rating

normalized to [0, 1] of this movie in this user group. This set of normalized scores for movies are

used as arm-means, where each movie corresponds to an arm. In figure 5, we run our algorithm

with this arm-means and a common parameter of ε = 0.05. In each plot of Figure 5, we randomly

sample a collection of movies satisfying the above property, and then do 10 random runs and plot

the average over these runs along with 95% confidence intervals. The confidence bars are smaller

than the size of markers on plot.

Results - We see from Figure 5, that even for large systems, our algorithm reaps benefits of

collaboration. In particular, since the number of arms is large (200 or more), single agent UCB
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Fig. 4. The system parameters (n,K) from left to right are (20, 50), (30, 60), (40, 60) respectively. The top row
corresponds to ∆ = 0.2 and the bottom row ∆ = 0.1.

Fig. 5. The plot of regret in Movielens data. The figures from left to right comprise systems with (n,K) as
(20, 200), (25, 220), (30, 240) respectively. The average number of arms an agent was aware of by the end of
simulation window were 15.5, 14.8, 14.1 respectively

is incurring linear regret in the simulation window, while our algorithm has gone into the late

phase and has a sub-linear regret growth much earlier. This is because, in all experiments our

algorithm is only exploring much smaller number of sub-optimal arms (under 16 in all cases as

described in Figure 5) compared to the standard UCB. Moreover, the arm gap in all of the plots are

0.01 or smaller (note the arms were randomly selected for each plot), yet our parameter of ε = 0.05
performs quite well, implying that our algorithm is quite robust.

7 RELATEDWORK
Our work focuses on multi-armed bandit (MAB) [13, 56] problems in a multi-agent setting, which

has received increasing attention in a number of applications. The earliest work in this direction is

[7], which consider an adversarial bandit model with malicious agents. This setting was further

developed in [17], with delays in communication among agents which were connected by a general

graph. However, there are no restrictions on the communications and agents in these models

could communicate after every arm-pull. Subsequently, [31], studies the communication versus

regret trade-off in a distributed setting with non-stochastic bandits. However, their model does

not impose pairwise communication, rather agents communicate via a central coordinator. In the

non-stochastic setting, [45] introduces interactions across agents as limited advice from experts
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and thus different from our setting.

In the stochastic bandit setting, the papers [19], [15] studies the trade-off between communication

cost and regret minimization among a team of bandits. However, in these models, agents can

simultaneously share information with all others and thus different from the pairwise communi-

cation setting of this paper. The model in [33] considered a multi-agent bandit optimization on a

social network, where the action and reward of an agent can be observed by neighbors on a graph.

However, there is no notion of communications versus regret trade-off as agents communicate to

their neighbors at all time steps in their model. A recent work of [40] considered a multi agent

setup where agents can choose to communicate with all neighbors on an underlying unknown

graph. However, agents in their algorithm communicate after each arm-pull and thus do not have a

communications versus regret trade-off.

There has also been work ([27],[54]) in understanding the communication versus simple regret

(pure explore) trade-off for best arm identification, which is different from the cumulative regret

(explore-exploit trade-off) considered in this paper. Moreover, information sharing in these models

are different from ours - the communication model of [27] is one where every node can see every

other node’s message, whereas the agents in [54] can communicate at each time step and hence

the communications per agent is linear in the number of arm-pulls. However, similar to our paper,

both these papers require some knowledge of the arm-gap ∆. The algorithm of [27] is guaranteed

to work if the time horizon T , which is an input parameter, exceeds a function of ∆, while the
algorithm in [54] requires an explicit lower bound on ∆.

The paper [36] considers a distributed bandit setting where agents communicate arm means using

a consensus algorithm without any communication limitations, unlike our setting. There has also

been a line of work ([39], [43], [5], [30], [10], [1]) where the agents are competitive, unlike our

setting, and interact only indirectly by observing each others’ rewards. The paper of [49] considers

a model with different arm means for agents. In each time-step, a single action is taken by the

network as a whole through voting process unlike ours where each agent takes an action. The

paper [18] considers a single centralized learner that is playing multiple contextual bandit instances,

where each instance corresponds to a user on a graph. The graph encodes interactions where

‘nearby users’ on the graph have ‘similar’ contextual bandit instances, different from interactions

in our model. Recent works [51], [16] have considered the social learning problem where agents do

best-arm identification (simple regret). In these setups, the memory of an agent is limited, and hence

standard bandit algorithms such as UCB is infeasible. Rather agents resort to simpler algorithms

such as the replicator dynamics and thus, their algorithmic paradigm is not applicable to our setting.

Developments in large scale distributed computing is prompting the study of other learning

questions in a decentralized setting. For instance [22], [48], [41], [12], [44], [50], study multi-agent

convex optimization with gossip style communications. More classically, gossip based computation

models has a rich line of history under the name of population protocols [2] and rumor spreading

([21], [32]). We refer the reader to [47] and related references for other applications of the gossip

mechanism.

8 CONCLUSION AND OPEN PROBLEMS
In this paper, we study a problem of collaborative learning when there are a group of agents playing

the same instance of the MAB problem. We demonstrate that even with limited collaboration,

the per agent regret is much smaller when compared to the case when agents do not collaborate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 53. Publication date: December 2019.



53:18 Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai

The paper however motivates several open questions. An immediate question is how to design an

algorithm in which the agents are not aware of the arm-gap ∆. This is particularly challenging

since an agent is not aware of when to make recommendations, i.e., agents must balance both best-

arm identification as well minimizing simple regret. Even the state of art, best-arm identification

algorithms in a networked setting also needs knowledge of ∆ ([27],[54]). Another question that

arises from our work is to understand other algorithmic paradigms to exploit collaboration. In this

paper, we considered the scenario where agents only play from among the arms it is aware of,

where collaboration is key to expanding the set of arms an agent is aware of. Are there natural

protocols, where the set of arms an agent is aware of can be modeled in a ‘soft’ fashion, where

agents prefer to play those arms that has been recommended to it more than other arms that have

been recommended fewer number of times. This is a challenging problem, both from an algorithmic

design perspective and also from a mathematical stand point. Third, can Theorem 27 be tightened

to get precise limiting theorems similar to those obtained in [24] and [42]. Such a result will help

in reducing the constants in the definition ofM and L.
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A ANALYSIS OF THE ALGORITHM
We will analyze the regret experienced by fixing an arbitrary agent I ∈ {2, · · · ,n}. Recall the
definition given in Section 5 of when we call the early-phase of our system Good. Observe that if
the system is Good, then every agent will be aware of the best arm, in phase −1. Thus, conditional

on the event Good, all agents will start playing the best arm in phases 0 and above. For ease of

notation, denote by Tn := (M − 1)L(1 + δ ) in the rest of the proof.

Lemma 7. A sample path is Good with probability at-least 1 − 150 log(n)n−3.

The proof of this lemma is deferred to Section B. To carry out the analysis further, we will need

two classical results from the study of Multi-Armed Bandits (MAB) [4, 14].

Proposition 8. [4] Consider playing the UCB(α ) algorithm for T time steps of a K armed MAB. The
regret is upper bounded by E[RT ] ≤ 4α

∆ log(T ) + K
(
1 + π 2

3

)
.

We will also need another result from the literature [14] that we reproduce here for completeness.

Proposition 9. [14] Consider a MAB problem with K arms and playing the UCB strategy. The
probability that afterT time steps the best arm is not the most played arm is at-most K

α−1

( T
K − 1

)
2(1−α ),

for all T such that T ≥ max

(
K(K + 2),K

(
1 +

4α log(T )
∆2

))
.

Remark 10. The constant T0 is chosen such that T0 ≥ max

(
K(K + 2),K

(
1 +

4α log(T0)
∆2

))
, and hence

the previous error bounds are applicable to all agents in phases 0 and beyond.

To now carry out the analysis, we define a few other random variables. Denote by τ to be the

number of epochs of agent 1 that have elapsed, before agent I becomes aware of the best arm (i.e.,
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arm indexed 1). Recall that agent 1, has the best arm in its set at time 0, i.e., 1 ∈ A(−M )
1

. Denote by

the random variable X ∈ {1, 2, ..}, to be the first phase of agent 1, when agent 1 communicates the

best arm to agent I in consideration. In other words, X is a random variable denoting the earliest

late-phase state of agent 1, such thatO (X )
1
= 1, i.e., agent 1 has for its opinion the best arm, and agent

1 communicates this opinion to agent I , while it is in phase X . Denote by S ∈ {−M, · · · , , 0, 1, ...},
to be the state in which agent I receives the best arm for the first time, as a recommendation from

another agent.

Proposition 11.

E[τ |X ] ≤ ML + ⌊
T0
2

2
2
X−1
⌋ + n

Proof. The time τ is clearly upper bounded by the time agent 1 takes to spread the best arm itself

to agent I . From the definition of the random variable X , this happens at some point of time when

agent 1 is in state X . Conditional on X , the number of epochs of agent 1 taken to reach the end of

phase X − 1 (which is also equal to the beginning of phase X ) isML + ⌊T0
2
2
2
X−1
⌋. Now, in phase X ,

the average number of epochs taken by agent 1 to communicate its opinion to agent I is at-most n.
This is at-most n, since conditional on X , we know that agent 1 will communicate the best arm

within a deterministic number of epochs. Since, the average time of a Geometric random variable

conditioned that it is smaller than a fixed deterministic constant is at-most its mean, in an additional

average of n epochs of agent 1 in phase X , it will communicate the best arm to agent I . □

Proposition 12. For all j ≥ 1, we have

P[X > j] ≤

j∏
i=1

(
K

α − 1

(
Ti−1
K
− 1

)
2(1−α )

+ e−2
i

)
,

where Ti := ⌊
T0
2
2
2
i
⌋ − ⌊

T0
2
2
2
i−1
⌋. Here the empty product

∏
0

i=1 = 1.

Proof. To have the eventX = j , in all phases l ∈ {1, · · · , j−1}, we must have either had the opinion

O (l )
1
, 1, or agent 1 does not communicate the best arm to agent I in phase i . Additionally in phase

j , both the opinionO (j)
1

must correspond to the best arm and agent 1 must have communicated it to

agent I in its jth phase. Since we are interested in an upper bound on the probability, we can assume

that agent 1 is aware of all n arms in all its late-stages. This provides the largest error probability

that the opinion of agent 1 in a late-phase is different from the best-arm. From Proposition 9, we

know the probability that agent 1 has an opinion in phase i which is different from the best-arm is

at-most
K
α−1

(
Ti−1
K − 1

)
2(1−α )

. Similarly, the probability that agent 1 fails to communicate the best

arm to agent I in n2i attempts is at-most (1 − n−1)n2
i
≤ e−2

i
. Thus the probability that agent 1 fails

to inform agent I of the best arm, when agent 1 is in phase i is at-most

(
K
α−1

(
Ti−1
K − 1

)
2(1−α )

+ e−2
i
)
.

The result then follows from the independence of opinions and the communication recipients of

agent 1 across different phases and epochs. □

Notice immediately that we have P[X < ∞] = 1, and thus the algorithm ensures that agent I (and
by symmetry) all agents will be aware of the best arm eventually with probability 1. However, we

want to ensure that agents become aware of the best arm ‘soon’ enough on average, which is the

subject of the following computations.
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Proposition 13.

E[τ |Good] ≤ ML,

E[τ |¬Good] ≤ ML + 5T0 + n

Proof. Conditional on the system being Good, we know that all agents are aware of the best-arm

before any agent moves into the late-phase. Since, every agent moves into the late-phase afterML
epochs, the first inequality follows.

For the second Equation, we proceed as follows. We upper bound the number of epochs τ by

the number of epochs that agent 1 takes to spread the best arm to agent I in the late-phase of

agent 1. Conditional on the event not Good, we assume a worst case upper bound, where agent

1 is playing among all the K arms in all its late-phases. Agent 1 moves into the late-phase after

ML clock epochs. We thus only need to compute the average number of epochs agent 1 takes,

before it finishes phase X − 1 in the late-stage. For any late-phase j ≥ 1, we know a bound on

P[X = j + 1] from Proposition 12. In the event X = j + 1, agent 1 takes a total of ⌊T0
2
2
2
j
⌋ epochs

to move from the beginning of phase 0 to the beginning of phase j + 1. Moreover, once in phase

X , agent 1 will spread its opinion to agent I in at-most n average epochs. This follows since each

recipient of recommendations are chosen uniformly at random independent of everything else, and

thus average number of epochs required to contact agent I is n. Moreover, we know that within

n2X epochs, agent 1 will communicate with agent I . This conditioning only reduces the average

number of epochs required from n. Thus, the expected number of epochs of agent 1 to get from the

beginning of phase 0 to the beginning of phase X is at-most

E[τ |¬Good] ≤ ML +
∞∑
j=1

⌊
T0
2

2
2
j
⌋P[X = j] + n,

≤ ML +
∞∑
j=1

⌊
T0
2

2
2
j
⌋P[X ≥ j] + n,

≤ ML + 2T0 +
∞∑
j=3

⌊
T0
2

2
2
j
⌋P[X ≥ j] + n.

From Proposition 12, we can bound the last series sum term as

∞∑
j=3

⌊
T0
2

2
2
j
⌋

j∏
i=1

(
K

α − 1

(
Ti−1
K
− 1

)
2(1−α )

+ e−2
i

)
≤

∞∑
j=3

⌊
T0
2

2
2
j
⌋

(
K

α − 1

(
Tj−1

K

)
2(1−α )

+ e−2
j

)
≤
T0
2

∞∑
j=3

(
2

e

)
2
j

+
T0
K

∞∑
j=3

1

2
2
j ,

≤ T0

To have this sum convergent is precisely why agents communicate for n2j times in phase j in our

algorithm. This allows the error probability of e−2
j
, to decay doubly exponential, to make the above

sum convergent. □

As a corollary of the above statement, we get the following.
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Corollary 14. Denote by τI to be the number of epochs of agent I , before it is aware of the best arm.
Then,

E[τI |Good] ≤ ML

E[τI |¬Good] ≤ ML + 3T0 + n

Proof. Observe that the clock processes across agents are i.i.d.. The random variable τ is inde-

pendent of the clock process CI (·). More importantly, the random variable τ is independent of the

inter-epoch duration process of C1(·), and only depends on the randomness of the independent

marks of C1(·). Since, for any random variable F ∈ N such that F is independent of CI (·) and C1(·),

the expected number of epochs in CI (·), when F epochs occurs in C1(·) is F , the proof follows from
Proposition 13. □

Proposition 15. Denote by S ∈ {−M, · · · , , 0, 1, ...} be the random variable denoting the phase of
agent I , when agent I receives the best arm. Then E[S |¬Good] ≤ 2 and E[S |Good] ≤ −1.

Proof. From definition of τI , we know from Corollary 14, that E[τI ] ≤ ML + 5T0 + n. For any

deterministic t ∈ N, denote by S(I )t ∈ {−M, · · · , 0, 1, · · · } to be the state of ant agent after t epochs.
From the description of the algorithm, we have

St ≤ inf

{
m ≥ 0 : t ≤ ⌊

T0
2

2
2
m
⌋

}
,

It is easy to verify that for t = ML + 5T0 + n ≤ 8T0, that St ≤ 2. Thus, after a random τI number of

epochs, we have

E[S] = E[SτI ]

= E

[
inf

{
m ≥ 0 : τI ≤ ⌊

T0
2

2
2
m
⌋

}]
(a)
≤ inf

{
m ≥ 0 : E[τI ] ≤

m∑
l=0

⌊
T0
2

2
2
l
⌋

}
= SML+5T0+n ≤ 2.

Inequality (a) follows from the fact that E[inf f (X )] ≤ inf E[f (X )] for any non-negative function

f (·). □

Proposition 16. For all agents i ∈ {1, · · · ,n}, we have
∑

j≥1 P[O
(j)
i , 1|Good] ≤ K−2.

Proof. Conditional on the event Good, we know that the best arm is played by all agents in the

late phase. For any agent i ∈ [1,n] and any phase j ≥ 1, we can bound the error probability as

P[O (j)i , 1|Good] ≤
K

α − 1

(
1

K
⌊
T0
2

2
2
j−1
⌋ − 1

)
2(1−α )

,

≤
K

α − 1
(K22

j−1−1 − 1)2(1−α ),

≤
K

4(α − 1)
K2(1−α )

2
2
j (1−α ).

The second inequality above follows from the fact that T0 ≥ K2
. By setting α = 3, we get that

P[O (j)i , 1|Good] ≤ K−2
8
2
−2j+1

. The result follows from a simple series bound. □
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As a consequence of the above proposition, we obtain the following result.

Proposition 17. For any j ≥ 0, we have E[|A(j)I |] ≤ 2M + 3K
n2
+ ⌈Kn ⌉.

Proof. We have the basic decomposition.

E[|A(j)I ] = E[|A
(j)
I |Good]P[Good] + E[|A

(j)
I |¬Good]P[¬Good],

≤ E[|A(j)I |Good] + K(3n
−2),

where in the second step we use the bound P[Good] ≤ 1 and E[|A(j)I |¬Good] ≤ K and the result

of Lemma 7 to bound P[¬Good] ≤ 3n−2. Thus it remains to compute E[|A(j)I |Good] ≤ 2M + 1 to
complete the proof.

At the beginning of any phase, |A(j)I | is ⌈
K
n ⌉ (the initial number of arms per agent) plus the sum of

distinct arm ids received by agent I uptill the end of phase j − 1. Conditional on the event Good,

we know that agent I will receive no more than 2M − 1 arms from all other agents, when the other

agents were in phase −1. Furthermore, conditional on the event Good, all agents will have the best

arm when they move to phase 0. It thus remains to compute the expected number of arms received

by agent I , when the agent recommending the arm is in a phase larger than or equal to 1. From

Proposition 16, we know that with probability at-least 1 − K−1, no agent will recommend an arm

different from the best arm in any late-phase. This then gives by a total probability argument that

E[|A(j)I | |Good] ≤ 2M − 1 + ⌈
K

n
⌉ + K−1K ,

where we assume the trivial upper bound of K , in the case that any agent in the late phase

recommends an arm different from the best arm. □

Equipped with the above set of results, we are now ready to prove Theorem 1, on the regret

experienced by agent I .

Proof. The regret of agent I after T epochs can be decomposed into three terms -

• The regret of at-mostML, for theML epochs in the early stage of agent I .
• The regret due to UCB algorithm in the late-stage of an agent. Here the number of arms played

by agent I in different late stage phases is different and random.

• An additional regret, if any paid until agent I is aware of the best arm in the late-stage.

The total regret, by linearity of expectation, is at-most the sum of the above three regret terms.

Term 1: All agents pay a regret no larger thanML in their early phase.

Term 2: To do so, we need some notation. Denote by a sequence (Gi )i≥0, where G0 = 0 and

Gi = ⌊
T0
2
2
2
i−1
⌋, for i ≥ 1. Notice that any agent plays for Gi+1 −Gi durations in phase numbered i .

For anyT ∈ N, denote by LT ∈ {0, ..} to be the last full phase played by agent I , i.e., LT := max{i ≥

0 : Gi ≤ T }. It is immediate to observe that LT ≤ log
2

(
log

2

(
2T
T0

))
. We will thus bound the regret

as the sum of regret experienced by agent I in the first LT + 1 phases of the late-stage.
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E[R
(I );Late-Stage
T ] ≤

LT +1∑
i=0

E[RGi+1−Gi ; |AI (T
(I )
i ) |
],

≤

LT +1∑
i=0

E[E[RGi+1−Gi ; |AI (T
(I )
i ) |
| |AI (T

(I )
i )|],

(a)
≤

LT +1∑
i=0

E

[
4α

∆
|AI (T

(I )
i )| log(Gi+1 −Gi ) + |AI (T

(I )
i )|

(
1 +

π 2

3

)]
,

(b)
≤

LT +1∑
i=0

(
4α

∆
E[|A(j)I |] log(Gi+1) + E[|A

(j)
I |]

(
1 +

π 2

3

))
,

≤

LT +1∑
i=0

(
4α

∆
E[|A(j)I |] log(T02

2
i−1) + E[|A(j)I |]

(
1 +

π 2

3

))
,

≤ (LT + 2)

(
4α

∆
E[|A(j)I |] log(T0) + E[|A

(j)
I |]

(
1 +

π 2

3

))
+

LT +1∑
i=0

4α

∆
E[|A(j)I |] log(2)2

i ,

(d )
≤

16α

∆
E[|A(j)I |] log(T )+

2 log
2

(
log

2

(
2T

T0

)) (
4α

∆
E[|A(j)I |] log(T0) + E[|A

(j)
I |]

(
1 +

π 2

3

))
.

Inequality (a) follows from the classical result on UCB(α ) [4] and the fact that for all i ≥ 0, |A(j)I |
is independent of the regret incurred by agent I in state j. Inequality (b) follows from replac-

ing Gi+1 − Gi ≤ Gi+1 and Proposition 17. Inequality (d) follows from the fact that LT + 2 ≤

2 log
2

(
log

2

(
T
T0

))
. Recall that an upper bound for E[|A(j)I |] is given in Proposition 17.

Term 3: If the event Good holds, then all agents are aware of the best arm at the beginning of their

late-phase and hence do not pay any additional regret apart for terms 1 and 2. In the rare case that

the Good event does not hold, which from Lemma 7, we know happens with probability at-most

150n−3, we know from Proposition 15 that on average, agent I does not play the best arm until the

end of phase 2. Thus, conditional on the system not being Good, the additional regret played by

agent I is at-most the number of epochs it takes to move from the beginning of phase 0 to phase

S + 1, which on average is 8T0. Since this occurs with probability at-most 150 log(n)n−3, the regret

accounted for the third term is at-most 150 log(n)n−38T0 =
1200 log(n) log(ε−1)max(K 2,n)

n3ε2 .

□

B EARLY STAGE ANALYSIS - PROOF OF LEMMA 7
The lemma states that

P(E1 ∩ E2 ∩ E3) ≥ 1 − 150 log(n)n−3.

Thus, it suffices to prove that

∑
3

i=1 P(E
c
i ) ≤ 150 log(n)n−3. This follows from Lemmas 23, 18 and 19

below. We first analyze events Ec
2
and Ec

3
, for which the required inequalities follow directly from

Chernoff tail bounds.

Lemma 18.

P[E2] ≥ 1 − n−5
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Proof. Observe that for any agent i , the number of recommendations it receives from all the other

n − 1 agents, through allM of their early phases, is a Binomial random variable with parameters

(n − 1)M and 1/(n − 1). This is because there are a total of (n − 1)M possible recommendations that

can be made by the other agents during their early phases, and each of those recommendations

reach agent i with probability 1/(n − 1), independent of everything else. Thus, from standard tail

bounds, we have

P

[
Bin

(
(n − 1)M,

1

n − 1

)
> 2M − 2

]
≤ exp

(
−
2

3

M

)
≤ n−6

Thus, from an union bound, we observe that with probability at-least 1 − n−5, every agent will

receive lesser than or equal to 2M − 2 recommendations from another agent in phase −1. □

Lemma 19.

P[E3] ≥ 1 − n−3.

Proof. Any agent i ∈ [n], will be in phase M or larger at time Tn , if in the time interval [0,Tn],
at-leastML clock ticks of the clock processCi (·) has occurred. We can bound the probability of this

not happening by a standard Chernoff bound as

P [Poi((M − 1)L(1 + δ )) ≥ ML] ≤ n−4,

since δ = 1

3M . Thus, by an union bound, at time Tn , with probability at-least 1 − n−3, no agent is in

phase 0 or larger. □

However, we remark that in the sequel in Lemma 24, we shall prove a more stronger statement

which implies Lemma 19. In order to bound the probability of event E1, we need the following

result on bandit arm estimation, whose proof can be found in [14].

Lemma 20. If an agent has 2M arms, where at each play instant it chooses an arm in a round robin
fashion, then the probability that the arm corresponding to the highest empirical mean does not equal
the arm with the highest mean reward after playing for
L ≥ ⌈ 2M

∆2
log(200M∆)⌉ times is at-most 1/100.

In order to bound the error probability E1, we consider a fictitious virtual system and show in the

sequel that with probability at-least 1 − 2n−3, the evolution of the virtual system coincides with

that of our algorithm in the time interval [0,Tn]. The virtual system, also consists of n agents, with

each agent playing the same bandit problem with the same K arms. The algorithm employed by

the agents in this virtual system is identical to the algorithm employed by the agents with identical

initialization of arms in the early-phase with the following three additional modifications.

• The agents are always in the early-stage till time Tn . In particular, if any agent makes M
recommendations before time Tn , it will continue to play further with the same early-stage

protocol until time Tn in the virtual system.

• At time Tn , the virtual system stops and no more activity occurs.
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• At the beginning of any stage, if any agent in the virtual system has 2M + ⌈Kn ⌉ + 1 or more arms

under consideration for the next state, then it will drop some arms to ensure that it has exactly

2M + ⌈Kn ⌉ arms to play at the beginning of the next state. The arm dropping policy is as follows.

If an agent hasM ≥ 2M + ⌈Kn ⌉ + 1 arms at the beginning of a state and the arm indexed 1

(i.e., the best arm) is not in the agent’s playing set, then the agent chooses a set of 2M + ⌈Kn ⌉
arms from among theM arms it has uniformly and independently at random. If on the other

hand, amongst theM arms that an agent has, the best arm, i.e., arm indexed 1 is in the agent’s

bag, then the agent chooses a uniformly at random subset of arms of size 2M − 1 + ⌈Kn ⌉ from
amongst the set ofM − 1 arms it has. In other words, if an agent has the best arm in its set, it

never gets dropped.

Lemma 21. With probability at-least 1−2n−3, the above virtual system and the algorithm has identical
sample paths uptil time Tn .

Proof. We construct a coupling of the virtual system and the algorithm through the same clock

process (Ci (·))
n
i=1 and the randomness for both sampling the rewards of arms and for the gossiping

communication process. Thus, on the event E2 and E3, this coupling construction produces identical

sample paths in the virtual system and the algorithm. For on the event E2, no agent in the virtual

system will ‘drop arms’ and on the event E3, all agents in the original algorithm are in their early-

phase. Lemmas 18 and 19 then give that with probability at-least 1 − 2n−2, both events E2 and E3
occurs. □

We now analyze the behaviour of this virtual system as it is somewhat easier, and then use the

above coupling result to conclude about the algorithm in the early stage. Denote by the event
˜E1 to

be the event at time Tn , all agents in the virtual system are aware of the best arm.

Lemma 22.

P[ ˜Ec
1
] ≤ 146 log(n)n−3.

Before giving the proof of this Lemma, we notice that this immediately yields that in the original

system:

Lemma 23.

P[Ec
1
] ≤ 148 log(n)n−3.

Proof. Denote by the random time Ŷn to be the first time when all n agents in the virtual system

are aware of the best arm. In the event that by time Tn , not all agents are aware of the best arm,

i.e., on the event
˜Ec
1
, let Ŷn = ∞. Similarly denote by the random time Yn to be the first time when

all agents in the algorithm are aware of the best arm. Notice from the construction of the virtual

system, that on the event the algorithm and the virtual system couples, we have Yn ≥ Ŷn , with

Yn = Ŷn if both the algorithm and the virtual system couples and event
˜E1 occurs. Thus, we have
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from total probability, the following chain

P[Ec
1
] = P[Ec

1
,Coupling occurs] + P[Ec

1
,Coupling fails],

(a)
≤ P[Ŷn > Tn ,Coupling occurs] + P[Coupling Fails],

≤ P[Ŷn > Tn] + P[Coupling Fails],

(b)
≤ 146 log(n)n−3 + 2n−3,

≤ 148 log(n)n−3.

In step (a), we use the fact that on the event that coupling occurs, we have Yn ≥ Ŷn , which is the

same as event
˜Ec
1
. In step (b), we use the estimates from Lemmas 21 and 22. □

We now return to Proof of Lemma 22. The key idea we will employ to prove Lemma 22 is to notice

that w.h.p., the spreading dynamics in the virtual system behaves almost identical to that of a

discrete rumor mongering system. Precisely, we can ensure that w.h.p., the recommendations made

by the agents ‘follow in sync’, i.e., no agent will make its j + 1st recommendation, before all other

agents finish making their jth recommendation, for all j ∈ [0,M].

Lemma 24. With probability at-least 1−n−3, for all j ∈ [1,M], for all agents i ∈ [n], agent i makes its
jth early stage transition in the time interval [jL(1 − δ ), jL(1 + δ )].

Proof. Observe that it suffices to prove that both P[Poi(L(1−δ )) > L] ≤ n−4 and P[Poi(L(1+δ )) <
L] ≤ n−4. If we establish this, then it follows from an union bound over all agents and all phases,

the claim of the lemma holds. From elementary Chernoff bounds, it follows that P[Poi(L(1 + δ )) <

L] ≤ e−L(δ+ln(
1

1+δ )) ≤ e−
1

2
Lδ 2

≤ n−5. Similarly, computing P[Poi(L(1 − δ )) > L] ≤ e−L(ln(
1

1−δ )−δ ) ≤

e−
1

2
Lδ 2

≤ n−5. □

Since δ = 1

3M , we have for all i ∈ [0,M − 1], iL(1 + δ ) < (i + 1)L(1 − δ ). Thus, the above lemma

gives us that all the arm recommendation events are ‘separated’. See also Figure 3. Thus, in light of

Lemmas 24 and 20, we can consider the following discrete time system, which can be viewed as a

‘noisy spreading’ version of the classical [24] process. There are n nodes, with nodes numbered 1

initially possessing a message. In each time-step, every agent that has had the message for at-least

1 or more time-steps, calls another agent chosen uniformly and independently at random and

attempts to communicate the message. Each communication attempt is correct with probability

at-least 99/100, independent of everything else. More formally, for every agent i ∈ [n], denote
by Yi ∈ N to be the first time agent i learns of the rumor. By definition, Y1 = −1, as initially, we
assume that agent 1 is aware of the message/rumor. The rumor spreads, where in each time t ∈ N,
all agents i ∈ [n], such that Yi ≤ t − 2, will attempt to communicate the rumor to another agent

chosen uniformly and independently at random. Each communication attempt is successful with

probability p ∈ (0, 1], independent of everything else. Denote by S
(p)
n = maxi ∈[n] Yi , the first time

when all agents are aware of the rumor. Observe that this process differs from the classical rumor

mongering process of [24] in two aspects. First, not all agents that receive the rumor spreads it.

Only those that have had the rumor for at-least 1 time slot participate in spreading it. Second, each

communication attempt is successful with probability 99/100, rather than being deterministically

successful. Nevertheless, we will show in Theorem 25, that this process behaves similar to the

classical rumor mongering process of [24], i.e., Sn = O

(
log(n)

)
, with high probability. A precise

statement is available in Theorem 25 where the proof follows similar arguments as used in [24],

which we produce here for completeness. The main reason we introduce this process as there is a
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natural coupling between the virtual system and the above described discrete process, which is

summarized in Proposition 26.

Theorem 25. For the noisy delayed rumor mongering process, we have for any γ > 0, p ∈ (0, 1] and
all n sufficiently large,

P[S
(p)
n ≥ 2C(γ ,p) log(n)] ≤ (2 + log

2−η(n))n
−(γ+1),

where C(γ ,p) and η are given in Theorem 27.

The proof of this is deferred to the Appendix C. From Remark 28 in the sequel, the above statement

reads that for all n ≥ 29,

P[S (0.99)n ≥ 361 log(n)] ≤ 145 log(n)n−3. (3)

Observe that the total number of early phases in our algorithm is equal to C(2, 0.99) log(n) + 1,

whereC(2, 0.99) ≤ 361 is from the above Theorem 25. Denote by the event Ed := {Sn < 2C(2, 0.99)
log(n)} in the above rumor mongering process.

Proposition 26. There is a coupling between the virtual system and the discrete time rumor mongering
process described above with noise probability p = 99/100, such that on the event Ed in the rumor
mongering process and the event in Lemma 24 in the virtual system, all agents i ∈ [n] in the virtual
system are aware of the best arm at time YiL(1 + δ ).

Proof. Observe that the number of recommendations made by any agent in the virtual system is

C(2, 0.99) log(n). Thus, on the event Ed , we have for all i ∈ [n], Yi ≤ M . To describe the coupling,

we map the rumor in the rumor mongering process to the best arm id in our algorithm. The success

probability in the rumor spreading corresponds to the fact that agents in the algorithm recommend

the best-arm. Since agents do not reuse samples, the independence of communications in the rumor

mongering process follows from that in the algorithm. To conclude the proof, it suffices now to

argue that a deterministic one step delay in the discrete rumor spreading process provides an upper

bound to the process induced by our algorithm. Notice that if an agent receives the best arm in

time slot [iL(1 − δ ), iL(1 + δ )] for some i ∈ [M] (this will be the case under the event in Lemma 24),

then the agent that receives this arm, may already have shifted to the next stage, and in particular,

will not recommend this received arm in the time interval [(i + 1)L(1 − δ ), (i + 1)L(1 + δ )]. Thus,
the deterministic one step delay in the discrete rumor mongering process provides an upper bound

on the times when an agent starts considering the best arm for recommendation. □

We are now ready to conclude the proof of Lemma 22.

Proof. of Lemma 22.

Notice thatM = 361 log(n) + 1 and from Theorem 25 and Equation (3), we have 2C(2, 0.99) ≤ 361.

Thus, from Proposition 26, and the estimates in Lemma 24, we know that with probability at-least

1 − n−3, the virtual system is such that, the arm spreading process is dominated by the discrete

rumor mongering process. Further, from Theorem 25 and Equation (3), the rumor mongering

process communicates the best arm-id to all agents beforeM time slots with probability at-least

1 − 145 log(n)n−3. Thus, we have P[ ˜E1] ≥ 1 − 146 log(n)n−3. □

C PROOF OF THEOREM 25
In order to prove Theorem 25, we shall consider a noisy version of the classical rumor spreading

process of [24] and [42]. Suppose there are n agents with agent 1 holding a message at time 0. For

each agent i ∈ [n], denote by time Ỹi ∈ N, to be the first time when agent i is aware of the message.

By definition, we have that Ỹ1 = 0. In each time step t ∈ N, every agent i such that Yi ≤ t − 1, will
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attempt to communicate the message to another agent chosen uniformly and independently at

random. Each communication successfully communicates the message with probability p ∈ (0, 1].

Denote by S̃
(p)
n = maxi ∈[n] Ỹi , to be the first time when all agents are aware of the message. The

following theorem sheds light on the growth of the random variable S̃
(p)
n .

Theorem 27. Let p ∈ (0, 1] and γ > 0 be arbitrary and V = 1

log

(
1

7

10
p+p̄

) (γ + 1). For all n sufficiently

large such that pV log(n)
n + p̄ < 1, we have

P[S̃
(p)
n ≥ C(γ ,p) log(n)] ≤ (2 + log

2−η(n))n
−(γ+1), (4)

where C(γ ,p) = log
2−η(n) +

(
D + 3

p (3 + 2γ )
)
log(n). The constant η ∈

(
2

3
p + p̄, 1

)
is the smallest

possible number such that (
2p
3
+ p̄

η

)η
1

(1 − η)(1−η)
<

7

10

p + p̄ < 1, (5)

and D is the smallest positive number so that the following equation is satisfied

inf

A>1

(
ApV

log(n)

n
+Ap̄

)D ©­­«
Ap

(A − 1)
(
ApV

log(n)
n +Ap̄

) ª®®¬
V

≤ e−(γ+1). (6)

A choice of η exists since limη↗1

(
ζ 2p+p̄

η

)η
1

(1−η)(1−η) = ζ 2p + p̄ < 1, for all ζ ∈ (0, 1/2). A choice of

A > 1 exists since pV
log(n)
n + p̄ < 1.

Remark 28. For the case of p = 0.99 and γ = 2, we have V = 8.52 and η = 0.993. For all n ≥ 29, we
have pV log(n)

n + p̄ < 1. This gives us D = 15.85. This gives us that C(2, 0.99) ≤ 180.413.

Before we give the proof, we notice that Theorem 27 immediately yields Theorem 25 as a corollary.

For any x ∈ N, we have the following stochastic domination

P[S
(p)
n ≥ 2x] ≤ P[S̃

(p)
n ≥ x]. (7)

This above Equation follows as one can view an upper bound to the delayed process where agents

only call in even numbered time-slots. The time for everyone to know the message in this call only

at even time slots process is clearly lower bounded by the time taken for all agents to know the

message when only the newly informed agents keep silent instead of all agents, i.e., the one step

delayed process. Hence, in light of Equation (7), it suffices to establish Theorem 27 in order to prove

Theorem 25.

Proof. The proof follows similar ideas used in [24] and [42]. We set some notations to carry out

the proof. Denote by the ‘state’ of the system at time t ∈ N to be the number of agents that are

aware of the rumor. For simplicity, at any time t ∈ N and state i ∈ [n], we will assume that agent 1

makes i different calls in this time step. Each call of agent 1 communicates the message across with

probability p independent of everything else. For i ∈ [n − 1], denote byWi as the number of calls

needed to be made by agent 1 to move the system from state i to i + 1. Let p̄ := 1 − p. Clearly, the
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following holds true.

P[Wi = r ] =

(
i

n
p + p̄

)r−1 (
1 −

i

n

)
p

E[etWi ] =
p(n − i)

e−tn − (ip + np̄)
, ∀t ≥ 0, s.t. et <

n

ip + np̄
.

It is immediate to verify that for all i < j and all t < n
jp+np̄ , we have

E[etWi ] ≤ E[etWj ]. (8)

In order to establish Equation (4), we shall consider the spread of rumor in phases as done in [24].

Recall from the theorem statement that the constant V = 1

log

(
1

7

10
p+p̄

) (γ + 1). We will establish the

following.

(1) With probability at-least 1−n−(γ+1), the number of informed agents increases from 1 toV log(n),
in at-most D log(n) time where V is in Theorem 27 and D is given in Equation (6).

(2) With probability at-least 1 − log
2−η(n)n

−(γ+1)
, where η is given in Equation (5), the number of

informed agents increases from V log(n) to n/3 in at-most log
2−η(n) time.

(3) With probability at-least 1 − n−(γ+1), the number of informed agents increases from n/3 to n in

at-most
3

p (3 + 2γ ) log(n) time.

If the above statements hold true, then the theorem is concluded by a straightforward union bound.

In what follows we establish each of the above three claims separately.

Step 1 -

The probability that it takes more than D log(n) time to inform V log(n) people is upper bounded
by P[W1 + · · · +WV log(n) ≥ D log(n)] which in turn can be upper-bounded as follows.

P[W1 + · · · +WV log(n) ≥ D log(n)]

(a)
≤ e−D log(n)t

V log(n)∏
i=1

p(n − i)

e−tn − (ip + np̄)
,

(b)
≤ e−D log(n)t

(
pn

e−tn − (V log(n)p + np̄)

)V log(n)

,

(c)
≤

((
Vp

log(n)

n
+ p̄

)
A

) (D−V ) log(n) (( Ap

A − 1

))V log(n)

.

In step (a), we use the classical Chernoff type bound where for a positive random variable X , for
all x ≥ 0, P[X ≥ x] ≤ e−txE[etX ], for all t ≥ 0. In step (b), we use Equation (8). In step (c), we use
et = n

A(log(n)p+np̄) for an appropriate value of A > 1. Thus, we get

P[W1 + · · · +WV log(n) ≥ D log(n)]

≤
©­­«
(
ApV

log(n)

n
+Ap̄

)D ©­­«
Ap

(A − 1)
(
ApV

log(n)
n +Ap̄

) ª®®¬
V ª®®¬

log(n)

.
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From the choice of the constant D specified in Equation (6) and n is sufficiently large as specified in

the theorem, we can choose A > 1 such that P[W1 + · · · +WV log(n) ≥ D log(n)] ≤ n−(γ+1).

Step 2 -

We will show that with high probability, starting from V log(n) informed agents, in each time step,

the number of informed agents multiples by a factor of at-least (2 − η) > 1 until n/3 agents are
informed for the first time. This implies that, with probability at-least n−(γ+1), in at-most log

2−η(n)
steps, the total number of informed agents rise from V log(n) to n/3.

More precisely, we will argue that if at some time t , the number of informed agents is V log(n),
then, with high probability, for all k ∈ N such that V log(n)(2 − η)k ≤ n/3, the number of informed

agents at time t + k is at-least V log(n)(2 − η)k . Thus, within ϕ := log
2−η(n/3V log(n)), steps, the

number of informed people increase from V log(n) to n/3 with high probability. To implement

this proof, define recursively, the following events. Event D(1) states that given there are at-least

V log(n) informed agents, there are lesser than V log(n)(2 − η) agents in the next time step. The

event D(i), for i ∈ {1,ϕ} is the event that starting from at-least V log(n)(2 − η)i−1 informed agents,

there are fewer than V log(n)(2 − η)i informed agents in the next time step. To argue about Step 2,

it suffices to bound

∑k
i=1 P[D(i)]. For any i ∈ {1, · · · ,ϕ}, we have

P[D(i)] ≤ P[Wj .. +Wj(2−η) > i],

where j = V log(n)(2 − η)i−1. Following the steps we outlined earlier, i.e., the Chernoff bound and

Equation (8), we bound this probability as

P[Wj .. +Wj(2−η) > j] ≤ e−jt
j(2−η)∏
l=j

E[etWl ],

≤ e−jt
(

p(n − j(2 − η))

e−tn − (j(2 − η)p + np̄)

) j(1−η)
,

≤ e−jtη
(

pn

n − et (jp(2 − η) + np̄)

) j(1−η)
,

≤

((
j

n

p(2 − η)

η
+
p̄

η

)η (
p

1 − η

) (1−η)) j
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where in the last step, we substitute t such that et =
nη

jp(2−η)+np̄ . Thus, we have

P[∪
ϕ
i=1D(i)] ≤

ϕ∑
i=1

P[D(i)],

≤

ϕ∑
i=1

((
j

n

p(2 − η)

η
+
p̄

η

)η (
p

1 − η

) (1−η))V log(n)(2−η)i−1

,

≤ ϕ

((
ζ
p(2 − η)

η
+
p̄

η

)η (
p

1 − η

) (1−η))V log(n)

,

≤ log
2−η(n)

(
7

10

p + p̄

)V log(n)

,

≤ log
2−η(n)n

−(γ+1).

Step 3 -

We once again employ the Chernoff bound and Equation (8) to our benefit. We shall bound the

probability of the total number of calls taken to move from one agent knowing the rumor to all n
agents knowing the rumor is order n log(n) with probability at-least 1 − n−(γ+1). However, as we
have at the beginning of this phase, at-least n/3 informed agents, this calculation will give that

at-most order log(n) calls suffice to move the system where n/3 agents know the message to all n

agents knowing the message. Denote by Λ =
3+2γ
p . The computation is as follows

P[W1 + · · · +Wn−1 ≥ Λn log(n)] ≤ e−tΛn log(n)
n−1∏
j=1

p(n − j)

e−tn − (jp + np̄)
.
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We will substitute e−t = 1 − p(2n)−1 in the above expression to obtain

P[W1 + · · · +Wn−1 ≥ Λn log(n)] ≤

(
1 −

Rp

2n

)Λn log(n) n−1∏
j=1

p(n − j)

n −
p
2
− (jp + np̄)

,

=
(
1 −

p

2n

)Λn log(n) n−1∏
j=1

p(n − j)

pn −
p
2
− jp
,

=
(
1 −

p

2n

)Λn log(n) n−1∏
j=1

(n − j)

n − 1

2
− j
,

=
(
1 −

p

2n

)Λn log(n) n−1∏
j=1

2j

2j − 1
,

=
(
1 −

p

2n

)Λn log(n) n−1∏
j=1

(
1 +

1

2j − 1

)
,

≤

(
1 −

p

2n

)Λn log(n)
exp

(
n−1∑
j=1

1

2j − 1

)
,

≤

(
1 −

p

2n

)Λn log(n)
exp

(∫ n

x=1

1

2x
dx

)
,

≤

((
1 −

p

2n

)Λn
exp

(
1

2

))
log(n)

,

≤ e−(γ+1) log(n),

≤ n−(γ+1).

since Λ =
3+2γ
p . Thus, a total of Λn log(n) calls from agent 1 suffices to inform all agents. However,

as there are at-least n/3 informed agents in each round, the above procedure takes at-most 3Λ log(n)
time steps to complete.

□

D INTERPRETATION OF THE RESULT
Our main result on the per-agent regret given in Equation (1) is a sum of 4 terms, each of which

has a natural interpretation.

(1) The term
4α
∆ 4M̂ log(T −T0) is the usual logarithmic scaling with time of the UCB algorithm.

However, this term states that on average, an agent is aware of no more than order log(n)+ ⌈Kn ⌉

arms, as M = Θ(log(n)) and thus a typical agent only explores order log(n) + ⌈Kn ⌉) arms on

average. Nevertheless, all agents are aware of the best arm, which allows a logarithmic scaling

of regret with time as opposed to a linearly scaling, which would be the case if an agent, with

positive probability, is not even aware of the best arm eventually.

(2) The termML constitutes the regret an agent pays in the early-phase. Notice that every agent

is in the early phase for exactly ML epochs. In the early phase, agents are only involved in

best-arm identification and gossiping and hence incur a linear regret.

(3) The 2 log
2

(
log

2

(
2T
T0

)) (
4α
∆ log

(
T0
2

)
+ M̂

(
1 + π 2

3

))
1T ≥T0 term is the regret incurred by agents

in the late-phase due to not re-using samples across phases. Recall that, even in the late-phase,
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agents only play arms based on the observed arm rewards in the current phase and not based on

the observed rewards of previous phases. This was done so as to ensure statistical independence

between quality of late stage recommendations and observed regret. This however incurs a cost

in the regret given by the term that scales as Θ(log(n) log log(T )).

(4) The term 8T0
(
150 log(n)

n3
1n≥29 + 1n<29

)
accounts for the errors as agents can in rare cases, shift

into late-phase without necessarily being aware of the best arm. This is term accounts for

the regret incurred in the late-stage in case of agent I not being aware of the best-arm at the

beginning of phase 0, and must wait for a certain duration before becoming aware of and paying

the best arm.

E USEFUL TAIL BOUNDS
In this section, we collect all useful Chernoff tail bounds for the various distributions for ready

reference.

Lemma 29. Let X be a Poisson random variable of mean λ > 0. Then, for any t > 0, P[X > λ + t] ≤

e−
t2
2λ h(

t
λ ), and for any 0 < t < λ, P[X < λ−t] ≤ e−

t2
2λ h(−

t
λ ), where the functionh(u) := 2

(1+u) ln(1+u)−u
u2

.

Lemma 30. Let X be a Binomial random variable, i.e., X ∼ Bin(n,p) for some n ∈ N and p ∈ (0, 1).

Then, for any δ > 0, P[X > (1 + δ )np] ≤ e−
δ 2
2+δ np .

Lemma 31. Let X be an exponential random variable of mean λ (i.e., parameter 1

λ ). Then for any t ≥ 0

P[X > tλ] ≤ e−t .

Received August 2019; revised September 2019; accepted October 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 53. Publication date: December 2019.


	Abstract
	1 Introduction
	1.1 Model overview
	1.2 Model Motivations
	1.3 Main Result
	1.4 Comparison with Benchmark Systems

	2 Problem Setting
	2.1 System Model
	2.2 Performance Metric
	2.3 Model Assumptions

	3 Algorithm 
	3.1 Notation
	3.2 Algorithm Description
	3.3 Algorithm PseudoCode
	3.4 Remarks on the Algorithm

	4 Main Result
	4.1 Discussion
	4.2 Algorithm Intuition and Challenges in Analysis

	5 Proof Sketch
	5.1 Late-Stage Analysis
	5.2 Early-Stage Analysis

	6 Numerical Results
	6.1 Synthetic Data
	6.2 Simulations with Real Data

	7 Related Work
	8 Conclusion and Open Problems
	References
	A Analysis of the Algorithm 
	B Early Stage Analysis - Proof of Lemma 7
	C Proof of Theorem 25
	D Interpretation of the Result
	E Useful Tail Bounds

